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Thesis of the Talk

Ideas from Bayesian Nonparametrics may
help with new capabilities in deep learning

How big should a model be?



How big should a model be?
Why is this a relevant question?
Reason 1:
• Network size determines compute and energy costs.
• It is possible to shrink models after training.
• Current advice is to make models as large as possible.

Can we find weights and size in a unified way?
To avoid unnecessary computation.

Reason 2:
• Data can arrive in a streaming fashion.
• We don’t know a priori how large a dataset we have.

Can we grow a NN’s size as we see more data?
To avoid poor performance, from constant/restricted model size.



🎯
Minimise model size,

while maintaining near-optimal predictions.



Most of Machine Learning is just Curve Fitting
Dataset: (𝑥𝑛, 𝑦𝑛)

𝑁
𝑛=1.

Inputs 𝑥𝑛 ∈ 𝒳, outputs 𝑦𝑛 ∈ 𝒴.

Goal: Find 𝑓 : 𝒳 → 𝒴, that predicts well for new 𝑥.

Neural networks just parameterise functions 𝑓𝑤(𝑥).



Designing a Neural Network
• Inductive bias: connectivity structure (architecture)

• Choose network size (how many neurons)
• Choose weights, using backpropagation

𝑤𝑡+1 ← 𝑤𝑡 +∇𝑤ℓ(𝑓𝑤(𝑥𝑡), 𝑦𝑡)

These problems should be tackled together.



Problem Formulation (let’s walk before we run)
Predictor is a single layer neural network:

𝑓(𝑥) = ∑
𝑀

𝑚=1
𝜑(𝑥; 𝑍𝑚, 𝜃)𝑤𝑚

Goal is to find:
• Hyperparameters 𝜃

Inductive bias.
• The size of the model 𝑀

Number of neurons.
• Parameters (“weights”) 𝑊 = {𝑤𝑚, 𝑍𝑚}

𝑀
𝑚=1

Control the function.

🎯 Start by finding clear answers for single-layer NNs.



1. What is wrong with minimising losses?
2. Bayesian Model Selection
2. Model Selection over Model Size? Or Nonparametrics?
3. A principle for selecting size



Training Loss / MaxLik is not sufficient
If we train weights 𝑊  only, given (𝜃,𝑀) by

𝑓∗ = argmin
𝑊

const +∑
𝑛
(𝑓(𝑥𝑛) − 𝑦𝑛))2
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1. What is wrong with minimising losses.
2. Bayesian Model Selection?
2. The Bayesian answer to model size: Nonparametrics.
3. A principle for selecting size



The Bayesian Answer
Let’s accept the “large” number of basis functions for now, and
solve the overfitting problem.

Bayesian inference is rumoured to be “robust to overfitting”.

General procedure: Just do Bayes rule on your unknowns!
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The Bayesian Answer
Let’s accept the “large” number of basis functions for now, and
solve the overfitting problem.

Bayesian inference is rumoured to be “robust to overfitting”.

General procedure: Just do Bayes rule on your unknowns!

Benefit #1: Uncertainty estimates on your parameters
Benefit #2: Hyperparameter selection

Bayesian computations are often intractable. ⇒ Approximating
𝑝(𝒟|𝜃) is hard enough, let alone for many different values of 𝜃!

𝜃∗ = argmin
𝜃
log 𝑝(𝒟 | 𝜃)

𝑝(𝑊|𝒟, 𝜃) = 𝑝(𝒟|𝑊, 𝜃)𝑝(𝑊|𝜃)
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To Summarise
• We used a “large” number of basis functions.
• We performed Bayesian inference over the weights

𝑝(𝑊|𝒟, 𝜃) = 𝑝(𝒟|𝑊, 𝜃)𝑝(𝑊|𝜃)
𝑝(𝒟|𝜃)

• Estimated inductive bias (hyperparams) using Type-II MaxLik

argmin
𝜃
log 𝑝(𝒟 | 𝜃)

• You may have noticed this was a Gaussian process.
• Interestingly, form of predictor is still single-layer NN:

𝑓(𝑥) = ∑
𝑁

𝑚=0
𝜑(𝑥; 𝜃, 𝑍𝑚)𝑤𝑚

𝜑(𝑥; 𝜃, 𝑍𝑚) = 𝑘𝜃(𝑥,𝑋𝑚) 𝒘 = (𝐾(𝑋,𝑋) + 𝜎2𝐼)−1𝒚



Where are we in our goals?
Predictor is a single layer neural network:
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Where are we in our goals?
Predictor is a single layer neural network:

𝑓(𝑥) = ∑
𝑀

𝑚=1
𝜑(𝑥; 𝑍𝑚, 𝜃)𝑤𝑚

Goal is to find:
• Hyperparameters 𝜃

Inductive bias. ✅
• Parameters (“weights”) 𝑊 = {𝑤𝑚, 𝑍𝑚}

𝑀
𝑚=1

Control the function. ✅
• The size of the model 𝑀

Number of neurons. 🤨

Our model grows, but by memorising all data!



1. What is wrong with minimising losses.
2. Bayesian Model Selection?
2. The Bayesian answer to model size: Nonparametrics.
3. A principle for selecting size



Why use Nonparametric models?
We stumbled into using “large” models, but why do we use
nonparametric models?

Classic arguments:
1. Allows for consistency as 𝑁 →∞.
2. Infinite basis functions are needed to quantify uncertainty.
3. Continual learning in new regions, requires basis functions there
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Can Bayes answer the Size Question?

Using “infinite” models leads to using N neurons.
This requires memorising the data, which is too many!

Can we use Bayesian model selection to determine
model size?

Or are we stuck with memorising all the data?

We could do model selection over the model size…

𝑝(𝑊, 𝜃,𝑀|𝒟) = 𝑝(𝒟|𝑊, 𝜃,𝑀)𝑝(𝑊|𝜃,𝑀)
𝑝(𝒟|𝜃,𝑀)

𝑝(𝒟|𝜃,𝑀)𝑝(𝜃)
𝑝(𝒟)

𝜃∗,𝑀∗ = argmax
𝜃,𝑀

log 𝑝(𝒟|𝜃,𝑀)



Bayesian Model Selection of Model Size is BAD
1. We would lose the good uncertainty estimation properties!
2. If you set up your model correctly,

Bayes doesn’t even distinguish between models of
different sizes!
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Bayesian Model Selection of Model Size is BAD
1. We would lose the good uncertainty estimation properties!
2. If you set up your model correctly,

Bayes doesn’t even distinguish between models of
different sizes!

See Occam’s Razor (Rasmussen & Ghahramani, 2000). One of my
favourite papers.





Bayes selects a nonparametric model!
• Bayes itself is pushing us to use “large” nonparametric models!
• Cannot rely on Bayes to choose a “small” model!



1. What is wrong with minimising losses?
2. Bayesian Model Selection
2. Model Selection over Model Size? Or Nonparametrics?
3. A Principle for Selecting Model Size



What principle can determine a compressed
model size,

without removing the benefits of
nonparametrics?

Define a nonparametric model,
then approximate it with M < N basis funcs.



Approximate GPs (Hensman et al., 2013; Titsias, 2009)
Step 1: Introduce family of approximate predictors

𝑞(𝑓(𝑥)) = 𝒩(𝑓(𝑥);∑
𝑀

𝑚=1
𝜑(𝑥; 𝑍𝑚, 𝜃)𝑤𝑚,…)

Predictor is finite neural network!
At least in the mean… Covariance is still nonparametric!

Step 2: Introduce objective function (variational inference)

ELBO(𝒘,𝑍,𝑀, 𝜃) = log(𝒟|𝜃) − KL[𝑞(𝑓) ‖ 𝑝(𝑓|𝒟, 𝜃)]
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Since KL > 0… ELBO ≤ log 𝑝(𝒟|𝜃).



Approximate GPs (Hensman et al., 2013; Titsias, 2009)
Step 1: Introduce family of approximate predictors

𝑞(𝑓(𝑥)) = 𝒩(𝑓(𝑥);∑
𝑀

𝑚=1
𝜑(𝑥; 𝑍𝑚, 𝜃)𝑤𝑚,…)

Predictor is finite neural network!
At least in the mean… Covariance is still nonparametric!

Step 2: Introduce objective function (variational inference)

ELBO(𝒘,𝑍,𝑀, 𝜃) = log(𝒟|𝜃) − KL[𝑞(𝑓) ‖ 𝑝(𝑓|𝒟, 𝜃)]

ELBO is a unified objective for all our questions!
• Optimising w.r.t. 𝒘,𝑍: finds weights (min KL)
• Optimising w.r.t. 𝜃: finds hyperparameters (max log 𝑝(𝒟|𝜃))
• Select M large enough, that more gives diminishing returns!



When Should we Stop Adding Basis Functions?
More basis functions is always better:

KL[𝑞𝑀+1(𝑓) ‖ 𝑝(𝑓|𝒟, 𝜃)] ≤ KL[𝑞𝑀(𝑓) ‖ 𝑝(𝑓|𝒟, 𝜃)]

• In single-layer models, we can also compute an upper bound to
the marginal likelihood

ELBO ≤ log 𝑝(𝐷|𝜃) ≤ EUBO
∴ KL[𝑞(𝑓) ‖ 𝑝(𝑓|𝒟, 𝜃)] ≤ EUBO− ELBO

• We select 𝑀  such that

EUBO− ELBO ≤ tolerance
• Can achieve arbitrarily exact approximation with 𝑀 ≪ 𝑁 !

(Burt et al., 2019; 2020)
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EUBO− ELBO ≤ tolerance
• Can achieve arbitrarily exact approximation with 𝑀 ≪ 𝑁 !

(Burt et al., 2019; 2020)

Simple Rule, Interesting Adaptive Behaviour!



Continual Learning (Pescador-Barrios et al., 2024; 2025)

Growth of neurons depends on novelty in data.
• Input range grows with 𝑁  (constant novelty)
• Input range constant (diminishing novelty)
• Heavy tailed inputs (occasional novelty)



Continual Learning (Pescador-Barrios et al., 2024; 2025)

Growth of neurons depends on novelty in data.
• Input range grows with 𝑁  (constant novelty)
• Input range constant (diminishing novelty)
• Heavy tailed inputs (occasional novelty)



Growing Neurons, Grokking, Pruning
Number of neurons depends on inductive bias!



Growing Neurons, Grokking, Pruning
Number of neurons depends on inductive bias!



Growing Neurons, Grokking, Pruning
Number of neurons depends on inductive bias!



Memorising first, then pruning



Memorising first, then pruning



Conclusion
We saw:
• Bayesian model selection for finding inductive bias,

but not model size.
• Approximate GPs can give all benefits of nonparametric models,

but with decoupled model size.
• Bounding the approximation error, gives a principle for

determining model size.
• This leads to adaptive behaviour of the size of the network, to the

problem.
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Conclusion
We saw:
• Bayesian model selection for finding inductive bias,

but not model size.
• Approximate GPs can give all benefits of nonparametric models,

but with decoupled model size.
• Bounding the approximation error, gives a principle for

determining model size.
• This leads to adaptive behaviour of the size of the network, to the

problem.

We can have our cake and eat it
We can define an infinite-sized model, but near-perfectly
approximate it with just the right amount of computational
resources!
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🎯 New procedures for training neural networks!

Can we automatically find:
• Inductive bias / connectivity structure / architecture

• Choose network size (how many neurons)
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Designing a Neural Network Training Procedure

🎯 New procedures for training neural networks!

Can we automatically find:
• Inductive bias / connectivity structure / architecture

• Choose network size (how many neurons)
More efficient, more adaptive, more automatic!



Papers
Gaussian processes:
• For an overview of Titsias/Hensman’s (Hensman et al., 2013; Titsias,

2009) method for VI in GPs, see my thesis (van der Wilk, 2019)
• Proof of accuracy of variational approximation (basis for when to

stop adding inducing variables / basis functions)
(Burt et al., 2019; 2020)

• Adaptive model size for continual learning
(Pescador-Barrios et al., 2024)

• Overall narrative of this talk (online soon!)

Bayesian Model Selection in Neural Networks:
• Bayesian Model Selection (Laplace approximation) recovers

ResNets, without explicit human design
(Ouderaa et al., 2023)

• See more by Tycho van der Ouderaa!
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