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Questions

§ How do uncertainty and inductive bias interact?
§ What is good behaviour of predictive error bars?
§ Should we be uncertain ”far away” from the training data?
§ Can we use input density as a metric for predictive uncertainty?

How should we measure uncertainty quality?

§ Toy examples to illustrate what it looks like when it works
§ Inspiration for new ways to measure and probe behaviour?
§ It’s early, let’s look at some pretty pictures (need Acrobat for animations)
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Minimising training loss

We’re looking for a fit that will generalise to new unseen test data.
Let’s minimise the training loss of the posterior mean.

Lpθ, σq “
N
ÿ

n“1

”

kθpxn, Xq
`

Kθ ` σ2I
˘´1

y´ yn

ı2
(1)

tθ˚, σ˚u “ argmin
θ,σ

Lpθ, σq (2)

We can fit anything with a tiny lengthscale and noise variance!
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How does uncertainty help?

Does uncertainty help against the overfitting?

§ Uncertainty by itself does not necessarily make predictions
better, if the wrong model is chosen

§ Uncertainty does make predictions more cautious, which can be
very useful!
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Model Selection according to Bayes

Model selection from a Bayesian point of view:

pp f , θ | yq “
ppy | f qpp f | θqppθq

ppyq

“
ppy | f qpp f | θq

ppy | θq
loooooooomoooooooon

pp f | y,θq

ppy | θqppθq
ppyq

loooooomoooooon

ppθ | yq

Key quantity for model selection is the marginal likelihood

ppy | θq “
ż

ppy | f qpp f | θqdθ

By handing our uncertainty on f p¨q in a Bayesian way, we also get the
marginal likelihood for model selection.
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Marginal likelihood fixes things

Instead, choose hyperparameters by maximising marginal likelihood:

In above L is indicated by ‘datafit‘, while ‘ELBO‘ indicates the marginal likelihood.

§ More sensible fit as the marginal likelihood rises
§ Datafit gets worse!

Marginal likelihood trades off
data fit and model complexity.
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Why does marginal likelihood work?

We have seen
§ Minimising training error doesn’t work
§ Uncertainty doesn’t necessarily help, but does make us more

cautious
§ Marginal likelihood seems to trade-off complexity and data fit

But why does the marginal likelihood lead to models
that generalise well?
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Marginal likelihood as incremental prediction

We can split the marginal likelihood up using the product rule:

ppyq “ ppy1qppy2|y1qppy3|tyiu
2
i“1q . . . (3)

“

N
ź

n“1

ppyn|txi, yiu
n´1
i“1 q (4)

§ The marginal likelihood measures how well previous training
points predict the next one

§ If it continuously predicted well on all N points previously, it
probably will do well next time
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Marginal likelihood computation in action
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Marginal likelihood evolution

§ Short lengthscale consistently over-estimates variance, so can’t
get a high density even with the observation in the error bars

§ Long lengthscale consistently under-estimates variance, so gets
a low density because the observations are outside error bars

§ Optimal lengthscale trades off these behaviours...

well.
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Marginal likelihood in action

§ We chose the prior: f pxq “ θs fsmoothpxq ` θp fperiodicpxq, with
smooth and periodic GP priors respectively.

§ Marginal likelihood learns how to generalise not just to fit the
data.

§ Amount of periodicity vs smoothness is automatically chosen by
selecting hyperparameters θs, θp.
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Marginal likelihood in action
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Marginal likelihood as a prior probability

A complementary view
§ Marginal likelihood is the probability of the data under the prior.

ppy|θ, Xq “
ż

ppy | f pXq, θqpp f | θqd f (5)

§ For zero-mean GP regression models it has the explicit form:

log ppy|θ, Xq “ logN
`

y; 0, K` σ2I
˘

(6)

“ ´
N
2

log 2π´
1
2

log
ˇ

ˇK` σ2I
ˇ

ˇ

looooooomooooooon

Complexity penalty

´
1
2

yT
`

K` σ2I
˘´1

y
loooooooooomoooooooooon

Data fit

§ Laplace approximations in Neural Networks look similar
§ Pretty amazing that you can estimate updating behaviour from

the shape of the loss function (ELBOs give lower bound!)
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Intermediate take-homes

§ Uncertainty and inductive bias interact! Prior is super important
to getting the right behaviour in uncertainty

§ Can’t get strong generalisation without low uncertainty
§ Marginal likelihood measures incremental predictive

performance
§ No need for hyperpriors to get good model selection!
§ Is the marginal likelihood safe from overfitting?
ùñ It’s safe from the kind of overfitting that the normal

likelihood exhibits
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Should we be uncertain far from the data?

Can we use input density
as a metric for predictive uncertainty?
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GPs as a Gold Standard for BNNs

§ GPs considered the ”gold standard” model for uncertainty
estimation.

§ Often in Bayesian Deep Learning, aim is to replicate GP
properties in DNNs.

§ Though implicitly, a GP with a Squared Exponential kernel.
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GPs as a Gold Standard for BNNs

§ ArcCos kernel is obtained from infinite limit of ReLU NN.
§ Still exact inference in a GP. Different inductive bias!
§ So what is the right one? What behaviour should BNNs copy?
§ Both extrapolations are reasonable.
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“Correct” extrapolation with model selection

§ Marginal likelihood uses appreciable ArcCos component
§ What if it’s wrong?
§ Terrible predictive log likelihood if we’re wrong about

extrapolation!
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Telling the model it’s wrong

§ Single datapoint is enough to change inductive bias.

§ How realistic is the train/test split assumption?
§ Should we give models a chance to learn under distribution shift?
§ We could measure how quickly they adapt?
§ Little data can be very informative for OOD / causality
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Invariance and Uncertainty

§ Another example of strong extrapolation.
§ Marginal likelihood prefers really strong predictions
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Invariance and Uncertainty: Another solution

§ Average over hyperparameters as well!
§ More cautious predictions.

ppy˚|Dq “
ż

ppy˚| f qpp f |θ,Dqppθ|Dqd f dθ (7)
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Intermediate take-homes

§ Extrapolation behaviour can be very desirable
§ This is at odds with being uncertain “far from the data”
§ Opinion: We should not rely on input density for uncertainty
§ Overconfidence can be fixed with additional observations
§ More Bayes also helps :-)
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Discussion points

§ Can we use input density for uncertainty estimation?
§ Should we be assessing uncertainty as part of a continual

learning process? Is it fair to force our models not to learn on the
job?

§ Causality is often hard because of a lack of data (coloured
MNIST). Single example can break a hypothesis used for
generalisation!

§ How should we implement this behaviour? Bayes? Neural
Processes? Meta-learning? Is Bayesian reasoning helpful with
this?
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