BIVARIATE CAUSAL DISCOVERY USING BAYESIAN MODEL SELECTION

Mark van der Wilk ISBA World Meeting 2024

Based on a True Story (ICML 2024)

Bivariate Causal Discovery using Bayesian Model Selection

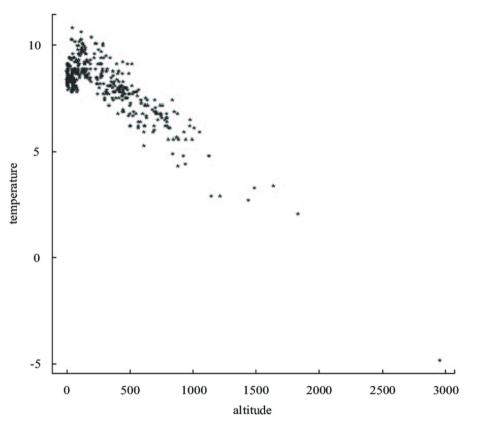
Anish Dhir¹ Samuel Power² Mark van der Wilk³

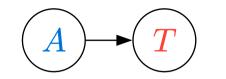
Background & Problem Setting

Why is Causality Important?

Conditional p(a|t) assumes pair
(a, t) sampled *jointly* from the same distribution!

- When intervening, you cannot affect your cause!
- Intervention breaks links to ancestors, so p(a|do(t)) = p(a).
- But... $p(\mathbf{t}|do(\mathbf{a})) = p(\mathbf{t}|\mathbf{a}).$

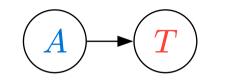




 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{a} | \mathbf{t}, \theta) p(\mathbf{t} | \varphi)$

 $p(a|t, \theta)$: cond. density model $p(t|\varphi)$: density model

 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{t} | \mathbf{a}, \theta) p(\mathbf{a} | \varphi)$ $p(\mathbf{t} | \mathbf{a}, \theta) : \text{cond. density model}$ $p(\mathbf{a} | \varphi) : \text{density model}$

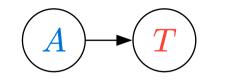


 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{a} | \mathbf{t}, \theta) p(\mathbf{t} | \varphi)$ $p(\mathbf{a} | \mathbf{t}, \theta) : \text{cond. density model}$ $p(\mathbf{t} | \varphi) : \text{density model}$

 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{t} | \mathbf{a}, \theta) p(\mathbf{a} | \varphi)$ $p(\mathbf{t} | \mathbf{a}, \theta) : \text{cond. density model}$ $p(\mathbf{a} | \varphi) : \text{density model}$

Causality should determine model structure

We want sensible results if we apply intervention rules to our *model*!



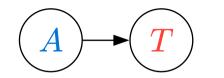
 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{a} | \mathbf{t}, \theta) p(\mathbf{t} | \varphi)$ $p(\mathbf{a} | \mathbf{t}, \theta) : \text{cond. density model}$ $p(\mathbf{t} | \varphi) : \text{density model}$

 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{t} | \mathbf{a}, \theta) p(\mathbf{a} | \varphi)$ $p(\mathbf{t} | \mathbf{a}, \theta) : \text{cond. density model}$ $p(\mathbf{a} | \varphi) : \text{density model}$

Causality should determine model structure

We want sensible results if we apply intervention rules to our *model*!

Goal: Predict causal structure from observational data.

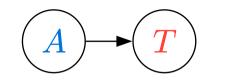


 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{a} | \mathbf{t}, \theta) p(\mathbf{t} | \varphi)$

 $p(a|t, \theta)$: cond. density model $p(t|\varphi)$: density model

 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{t} | \mathbf{a}, \theta) p(\mathbf{a} | \varphi)$ $p(\mathbf{t} | \mathbf{a}, \theta) : \text{cond. density model}$ $p(\mathbf{a} | \varphi) : \text{density model}$

? Could try to fit φ, θ with maximum likelihood..?



 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{a} | \mathbf{t}, \theta) p(\mathbf{t} | \varphi)$ $p(\mathbf{a} | \mathbf{t}, \theta) : \text{cond. density model}$

 $p(\mathbf{t}|\varphi)$: density model

 $p(\mathbf{t}, \mathbf{a} | \varphi, \theta) = p(\mathbf{t} | \mathbf{a}, \theta) p(\mathbf{a} | \varphi)$ $p(\mathbf{t} | \mathbf{a}, \theta) : \text{cond. density model}$ $p(\mathbf{a} | \varphi) : \text{density model}$

? Could try to fit φ, θ with maximum likelihood..?

For *flexible* **models, both directions give equally good fit! S** Both models are in the same *Markov Equivalence Class*.

Approach: Restricted Model Classes

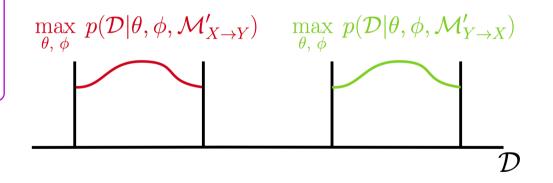
For *flexible* models, both directions give equally good fit! ⁽²⁾

$$\max_{\theta, \phi} p(\mathcal{D}|\theta, \phi, \mathcal{M}_{X \to Y}) \max_{\theta, \phi} p(\mathcal{D}|\theta, \phi, \mathcal{M}_{Y \to X})$$

 \mathcal{D}

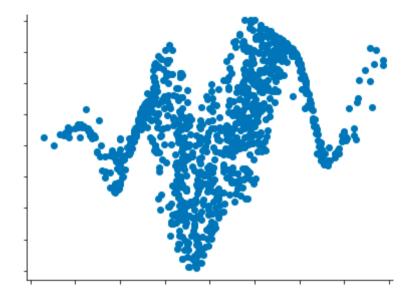
? Add restrictions, e.g. ANM effect = f(cause) + noise

 $\Rightarrow \text{Non-overlapping data support} \\\Rightarrow \text{So... identifiable! (as } N \rightarrow \infty)$



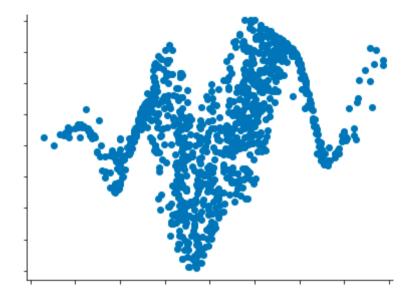
But what to do with a dataset like this one?

- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.



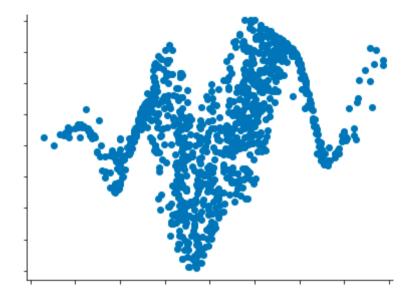
But what to do with a dataset like this one?

- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.



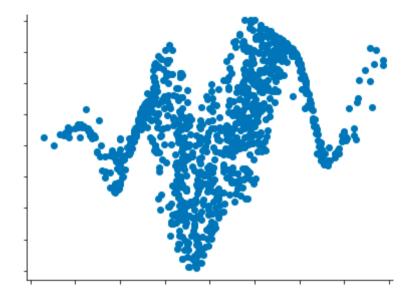
But what to do with a dataset like this one?

- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.



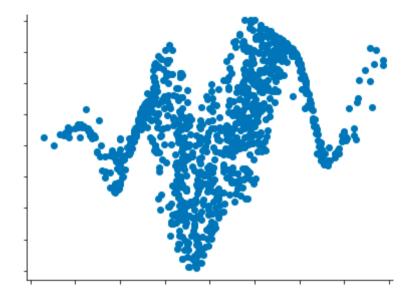
But what to do with a dataset like this one?

- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.



But what to do with a dataset like this one?

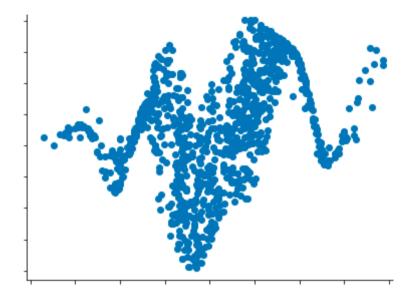
- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.



But what to do with a dataset like this one?

- Outside datasets covered by ANM!
- Poor fit \Rightarrow bad predictions.
- Loss of identifiability guarantees.

To model realistic datasets, we **want** our model to have support over all datasets!



Predict causal structure from observational data with flexible models with realistic assumptions.

Bayesian Perspective

Model Selection

- We have two models, with different causal assumptions.
- Each model has its own unknown parameters.
- We want to determine which model is appropriate.

Is this not just a hierarchical Bayesian inference problem?

Just find the posterior over the models, using the marginal likelihood:

$$\begin{split} p(\mathcal{M}_{X \to Y} | \boldsymbol{x}, \boldsymbol{y}) &\propto p(\boldsymbol{x}, \boldsymbol{y} | \mathcal{M}_{X \to Y}) p(\mathcal{M}_{X \to Y}) \\ p(\boldsymbol{x}, \boldsymbol{y} | \mathcal{M}_{X \to Y}) &= \iint p(\boldsymbol{x} | \varphi) p(\boldsymbol{y} | \boldsymbol{x}, \theta) p(\varphi, \theta) \, \mathrm{d}\varphi \, \mathrm{d}\theta \end{split}$$

Has been investigated before, but didn't get it quite right (see paper).

Causal Assumptions in Bayesian Models

Observational data, so causality enters only through model assumptions.

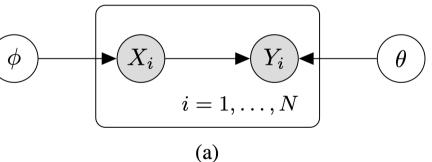
Symmetry implies that:

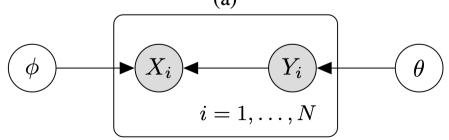
- $\bullet \ p(\mathcal{M}_{X \to Y}) = p(\mathcal{M}_{Y \to X})$
- We want the same prior on
 $$\begin{split} p(y_i | x_i, \theta, \mathcal{M}_{X \to Y}) \text{ as on} \\ p(x_i | y_i, \varphi, \mathcal{M}_{Y \to X}). \end{split}$$
- And similarly for

 $p(x_i|\varphi, \mathcal{M}_{X \to Y}) \text{ and } p(y_i|\theta, \mathcal{M}_{Y \to X}).$

ICM implies independent priors.

Causal direction is encoded in graph.



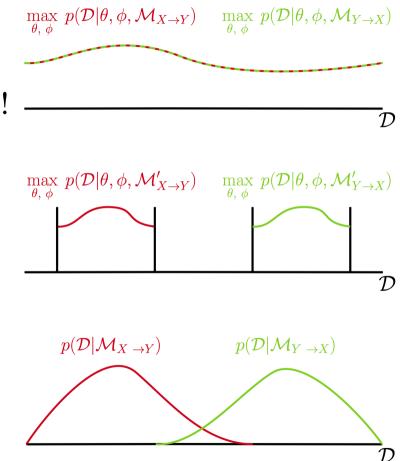


Guarantees (or lack thereof)

- Priors **gives Bayes an opinion** on causal direction, where MaxLik does not.
- Even for flexible models with wide support!
- Price you pay: Overlap in distributions. So no perfect identifiability. Even if data sampled exactly from prior!

$$\begin{split} P(E) &= \frac{1}{2} (1 - \mathrm{TV}[P_{\mathcal{D}}(\cdot \mid \mathcal{M}_{X \to Y}), \\ &P_{\mathcal{D}}(\cdot \mid \mathcal{M}_{Y \to X})]) \end{split}$$

• Is this so different from existing approach?



Putting this Into Practice

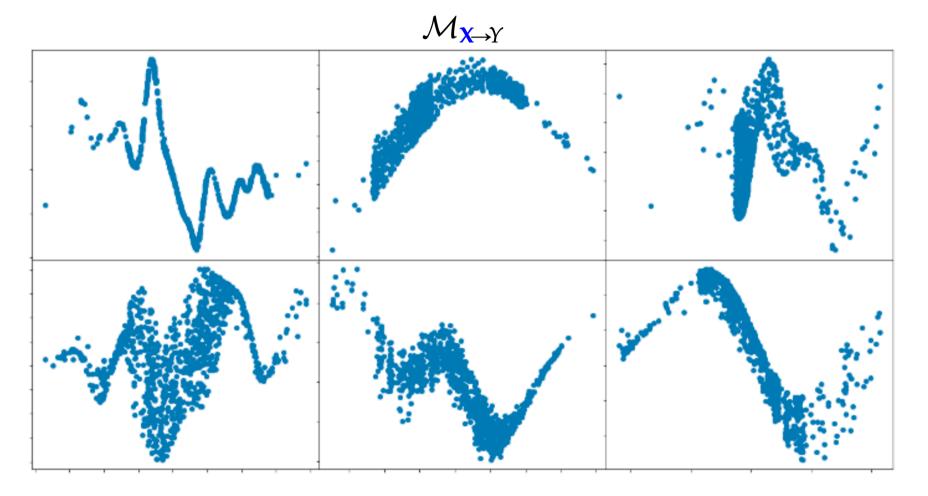
A Practical Model

A conditional GPLVM (Bayesian VAE) for the conditional density:

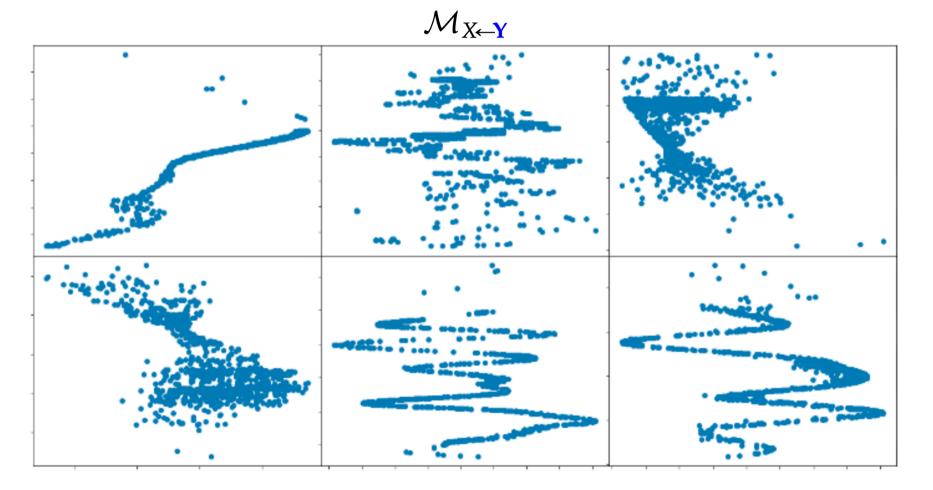
$$\begin{split} p(y_i | x_i, f, \mathcal{M}_{X \to Y}) &= \int \mathcal{N}(y_i; f(x_i, w_i), \sigma^2) \mathcal{N}(w_i) \, \mathrm{d} w_i \\ & f \sim \mathcal{GP}(0, k) \end{split}$$

- Flexible (non-parametric) model over many conditional densities.
- Similar GPLVM prior on $p(x_i|g, \mathcal{M}_{X \rightarrow Y}).$
- Relatively standard variational approximation to perform inference.

Overlap in Priors



Overlap in Priors



Experimental Results

Are our prior assumptions good?

- For identifiable ANM data, GPLVM gets 100% accuracy.
- For real data: Can **only** determine this experimentally, as in other approaches where theoretical assumptions are broken in practice.

Methods	CE-Cha	CE-Multi	CE-Net	CE-Gauss	CE-Tueb
CGNN	<u>76.2</u>	94.7	86.3	89.3	76.6
GPI	71.5	73.8	88.1	90.2	70.6
PNL	78.6	51.7	75.6	84.7	73.8
ANM	43.7	25.5	87.8	90.7	63.9
IGCI	55.6	77.8	57.4	16.0	63.1
LiNGAM	57.8	62.3	3.3	72.2	31.1
RECI	59.0	94.7	66.0	71.0	70.5
CCS	69.3	<u>96.0</u>	89.7	90.5	N/A
CHD	72.0	97.6	90.5	91.4	N/A
CKL	69.8	95.5	89.3	91.0	N/A
СКМ	69.7	90.6	<u>94.3</u>	91.6	N/A
CTV	72.2	95.8	91.9	<u>91.8</u>	N/A
GPLVM	82.1	97.7	98.8	90.2	78.3

Summary

- Causal discovery from observational data is naturally a Bayesian Model Selection problem.
- Bayes allows specifying *realistic* assumptions, without artificial/unverifiable restrictions.

A Bayesian method with realistic assumptions without strict guarantees outperforms methods with unrealistic assumptions that do provide guarantees.

Future Work & Links to Deep Learning

• Can we express causal assumptions in neural network architecture, and discover them?

Learning Layer-wise Equivariances Automatically using Gradients

Tycho F.A. van der Ouderaa1Alexander Immer2,3Mark van der Wilk1,4

- Can we scale this to multiple variables?
- Can we use deep generative models as meta-learners to replace explicit Bayesian approximate inference? (Everything Bayes can do, metalearning can do with simulated data.)