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Background & Problem Setting



Why is Causality Important?
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« When intervening, you cannot o |
affect your cause!
o Intervention breaks links to

ancestors, so p(aldo(?)) = p(a). [
e But... p(t|do(a)) = p(t|a).
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Two Causal Directions, Two Models
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p(t, alp,0) = p(alt, O)p(t|e) p(t,alp,8) = p(t|a,0)p(alp)
p(alt,d) : cond. density model p(tla,d) : cond. density model
p(tlp) : density model p(alp) : density model
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We want sensible results if we apply intervention rules to our model!
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() Causality should determine model structure

We want sensible results if we apply intervention rules to our model!

l Goal: Predict causal structure from observational data.
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Two Causal Directions, Two Models
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p(t, alp,0) = p(alt, O)p(t|e) p(t,alp,8) = p(t|a,0)p(alp)
p(alt,d) : cond. density model p(tla,d) : cond. density model
p(tlp) : density model p(alp) : density model

l @ Could try to fit ¢, § with maximum likelihood..?

For flexible models, both directions give equally good fit!
Both models are in the same Markov Equivalence Class.



Approach: Restricted Model Classes

For flexible models, both max p(D|0, ¢, Mx-y)

directions give equally good

fit!

~
________
-----------

© Add restrictions, e.g. ANM | .« (0|0, 6, M, )
0.6

effect = f(cause) + noise '/‘\‘ | ‘

= Non-overlapping data support D
= So... identifiable! (as N — 00)




Problem: Restricted Model Classes

But what to do with a dataset like this one?
 Outside datasets covered by ANM!

« Poor fit = bad predictions.

« Loss of identifiability guarantees.

To model realistic datasets, we want our
model to have support over all datasets!
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Problem: Restricted Model Classes

But what to do with a dataset like this one?
 Outside datasets covered by ANM!

« Poor fit = bad predictions.

« Loss of identifiability guarantees.

To model realistic datasets, we want our

model to have support over all datasets!

@ Predict causal structure from observational data with flexible
models with realistic assumptions.




Bayesian Perspective



Model Selection

« We have two models, with different causal assumptions.
« Fach model has its own unknown parameters.
« We want to determine which model is appropriate.

() Is this not just a hierarchical Bayesian inference problem?

Just find the posterior over the models, using the marginal likelihood:

p(MX—>Y|m7 y) X p(«’L‘» y|MX—>Y)p(MX—>Y)

p(@, Y My y) = // p(@|0)p(ylz, 0)p(p, 0) dp b

Has been investigated before, but didn’t get it quite right (see paper).



Causal Assumptions in Bayesian Models

Observational data, so causality enters only through model assumptions.

Symmetry implies that: Causal direction is encoded in

c DM x_y) =p(My_x) graph.

« We want the same prior on

p(y;|T;, 0, M x_,y) as on ,@_,@¢

P(%|%>%MY—>X)- i=1,....N
o And similarly for ) @ ’
p(z;|p, M x_y) and p(y;[0, My _ x). ( ]
ICM implies independent priors. . . .* .
i=1,...,N




Guarantees (or lack thereof)

» Priors gives Bayes an opinion on causal  pax p(DI0, ¢, M)

------
- S~

direction, where MaxLik does not. ~—
 Even for flexible models with wide support!

o Price you pay: Overlap in distributions. So
no perfect identifiability. Even if data max p(DIY, ¢, Miyy)
sampled exactly from prior! '/—\‘ | ‘

1
P(E) = S(1=TV[Pp(-|Mxy)s

Pr(- | My_ %) /\
o Is this so different from existing approach? =




Putting this Into Practice



A Practical Model
A conditional GPLVM (Bayesian VAE) for the conditional density:

D (il £, M xny) = / N (ys: f (@i w;), 02N (w;) du,

f~5P (07 k)
« Flexible (non-parametric) model over many conditional densities.
e Similar GPLVM prior on p(x;|g, M x_,v ).
« Relatively standard variational approximation to perform inference.



Overlap in Priors




Overlap in Priors
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Experimental Results

Are our prior assumptions good?

o For identifiable ANM data, GPLVM gets 100% accuracy.

o For real data: Can only determine this experimentally, as in other
approaches where theoretical assumptions are broken in practice.

Methods CE-Cha CE-Multi CE-Net CE-Gauss CE-Tueb
CGNN 76.2 94.7 86.3 89.3 76.6
GPI 71.5 73.8 88.1 90.2 70.6
PNL 78.6 51.7 75.6 84.7 73.8
ANM 43.7 25.5 87.8 90.7 63.9
IGCI 55.6 77.8 57.4 16.0 63.1
LiNGAM 57.8 62.3 33 72.2 31.1
RECI 59.0 94.7 66.0 71.0 70.5
CCS 69.3 96.0 89.7 90.5 N/A
CHD 72.0 97.6 90.5 914 N/A
CKL 69.8 95.5 89.3 91.0 N/A
CKM 69.7 90.6 94.3 91.6 N/A
CTV 72.2 95.8 91.9 91.8 N/A

GPLVM 82.1 97.7 98.8 90.2 78.3




Summary
« Causal discovery from observational data is naturally a

Bayesian Model Selection problem.
 Bayes allows specitying realistic assumptions,
without artificial/unverifiable restrictions.

O A Bayesian method with realistic assumptions without strict

guarantees
outperforms methods with unrealistic assumptions that do

provide guarantees.



Future Work & Links to Deep Learning
- Can we express causal assumptions in neural network architecture, and
discover them?

Learning Layer-wise Equivariances
Automatically using Gradients

Tycho F.A. van der Ouderaa! Alexander Immer?>> Mark van der Wilk!*

« Can we scale this to multiple variables?

- Can we use deep generative models as meta-learners to replace explicit
Bayesian approximate inference? (Everything Bayes can do, meta-
learning can do with simulated data.)
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