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A Group Effort

All this work done by brilliant PhD candidates, collaborators,
together with me.
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Baselines and Benchmarking GP Approximations

Recommendations for Baselines and Benchmarking Approximate
Gaussian Processes (Workshop on GPs)
Sebastian W. Ober, David R. Burt, Artem Artemev, MvdW
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Baselines and Benchmarking GP Approximations

Literature is very unclear!
§ Many approximations, inconsistent parameter selection.
§ Run on all UCI datasets, without understanding them.
§ Big table, new always outperforms old on “most datasets”.
Methods are so good, that benchmarking is holding progress back!

Take home 1: Benchmarking should include automatic tuning of
approximation params.

Take home 2: We should compare on:
§ Compute needed to obtain ε-optimal performance

Good approximations should have no performance difference!
§ Performance after various compute limits

OccaMLab at NeurIPS Mark van der Wilk Cambridge NeurIPS Meet-Up, Dec 8, 2022 5



SGPR as a Baseline

Take home 3: If you run SGPR in the right way, it’s near-exact.
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SGPR as a Baseline

Take home 4: Approximations and modelling are related. We need to
understand our datasets to make progress.
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Removing Memory Constraints

Memory Safe Computations with XLA Compiler (NeurIPS conf)
Artem Artemev · Yuze An · Tilman Roeder · MvdW

§ Methods are often memory limited (GPs, Transformers)
§ Memory efficient methods exist, but are hard to implement
§ We make an extension for XLA that automatically finds memory

bottlenecks in the computational graph, and removes them.
§ Remove Out of Memory errors with 0 changes to code.
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Learning Equivariance in Neural Networks

Invariance Learning in Deep Neural Networks with Differentiable
Laplace Approximations (NeurIPS conf)
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent
Fortuin · MvdW

§ Learn invariance parameters (expressed like data augmentation)
through backprop

§ Laplace approximation to the marginal likelihood
§ Bayesian Model Selection for interesting inductive biases seems

viable for DNNs!
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Learning Equivariance in Neural Networks

Relaxing Equivariance Constraints with Non-stationary Continuous
Filters (NeurIPS conf)
Tycho van der Ouderaa · David W. Romero · MvdW

Sparse Convolutions on Lie Groups (NeurReps workshop)
Tycho van der Ouderaa · MvdW

§ Parameterise a layer that can interpolate between
fully-connected, and various group equivariance

§ Towards layer-by-layer inductive bias learning!
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Bayesian Model Selection for Causality

Causal Discovery using Marginal Likelihood (CML4Impact workshop)
Anish Dhir · MvdW

§ Causal assumptions imply different assumptions in a Bayesian
model.

§ Bivariate causal inference as Bayesian Model Selection!
§ Can relax strict model class assumptions.
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Additive Noise Model

Common assumption:
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Join us!

§ Good time to be applying through StatML CDT
(https://statml.io/).

§ Check my website (https://mvdw.uk/) for tips on applying, and
how to get in touch.

§ And do find me to chat if you have questions.
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