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Outline

Goal: Towards automatic model selection in deep learning.

Talk outline:
1. The promises of Bayesian Model Selection
2. Difficulties with Bayesian Inference in Deep Learning
3. Other approaches: Ensembles and Architecture Search
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Model Selection

Every time we train a NN we need to decide on hyperparameters:
§ How many layers? How many units in a layer?
§ What layer structure? Convolutional? Skip connections?
§ Data augmentation parameters?

As architectures get more complex,
so does design! E.g. multitask.

§ Which layers to share?
§ What kind of task-specific

layers?
§ How much capacity to assign

to each task?

[Karpathy, ICML 2019]

Main tool is crossvalidation.
Goal: Make it as easy as learning weights.
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Bayesian Inference

fw : RD Ñ RC (1)
x ÞÑ fwpxq (2)

§ A prior on parameters leads to a prior on functions
§ Architectural hyperparameters influence prior on functions
§ BDL focusses mostly on uncertainty in the function:

pp f |y, θq “
ppy| f qpp f |θq

ppy|θq
(3)

But we want to determine the hyperparameters θ too!
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Bayesian Model Selection

Bayes tells us: Just find the posterior over all your unknowns!

pp f , θ|yq “
ppy| f qpp f |θqppθq

ppyq
“

ppy| f qpp f |θq
ppy|θq

looooooomooooooon

usual posterior

ppy|θqppθq
ppyq

looooomooooon

hyper posterior

(4)

§ Posterior over functions is unchanged!
§ Posterior over hyperparams requires marginal likelihood:

ppy|θq “
ż

ppy | f qpp f | θqdθ (5)

Bayesian model selection is commonly done by ML-II (Berger, 1985):
θ˚ “ argmax

θ

log ppy | θq , predict using pp f |y, θ˚q (6)

Gradient-based optimisation is super convenient!
... if we can compute ppy | θq
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Variational Bayesian Model Selection

Bayes tells us what to do, but not how to do it. Variational inference
actually does it, and gives us

§ An approximate posterior
§ An estimate of the marginal likelihood! (lower bound)

log ppy | θq “ Lpφ, θq `KL
“

qφp f q||pp f |y, θq
‰

ě L “
N
ÿ

n“1

Eqφp f pxnqqrlog ppyn| f pxnqqs ´KL
“

qφp f q||pp f |θq
‰

§ Find posterior and hyperparameters simultaneously by

argmax
φ,θ

Lpφ, θq (7)

§ Quality of posterior is linked to the accuracy of lower bound!
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The Ingredients

We need
1. A way to constrain our learnable function to be invariant
2. A way to parameterise different sets of invariant functions.

Differentiably.
3. An objective function for learning both the function

(i.e. weights), and invariance (i.e. θ).

f pxq « f ptpx; αqq @α P Aθ

P
´

r f ptpx; αqq ´ f pxqs2 ą L
¯

ă δ α „ ppα | θq
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Invariant functions

How do we parameterise the invariant function f p¨q?
§ Sum (convolve) a non-invariant function over set of

transformations we want to be invariant to!

Strict invariance (i.e. f pxq “ f ptpx; αqqwith exact equality):

f px; u, θq “
ÿ

αPAθ

gptpx; αq; uq

Weak invariance / data augmentation:

f px; u, θq “

ż

gptpx; αq; uqppα | θqdα

The function gp¨; uq is parameterised by u and can be seen as a
Gaussian process or a single-layer NN.
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Training procedure

1. Generate a sample of transformed images (reparam trick ppα | θq):

txpsq “ tpx, αpsqquS
s“1 αpsq “ hpεpsq, θq εpsq

iid
„ ppεq

2. Monte Carlo estimate of invariant function f pxq:

f̂ pxq “
1
S

S
ÿ

s“1

gpxpsq; uq

3. Compute unbiased estimate ELBO using MC estimate of f pxq:

L “ N ¨Eqpuq

”

log ppyn| f̂ pxnq
ı

´KLrqpuq||ppu|θqs

4. Backpropagate to get gradients!
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Training procedure

§ Be Bayesian about the function gp¨; uq
§ Averaging the output of gp¨; uq (data aug)
§ Compute an approximation to the marginal likelihood
§ Backpropagate
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Learning Invariances in DNNs

Find invariances through backprop for a Deep Neural Network, by
only computing the marginal likelihood for the last layer.

§ Can find invariance / data
augmentation by backpropagation!

§ Difficult training procedure...
§ Pola Schwöbel, Martin Jørgensen,

MvdW.
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Next Steps

§ Better objective functions that correctly regularise all parameters
§ Learning convolutions in individual layers
§ Decentralising computation
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Variational Bayesian Model Selection in DNNs

How does this work when applied in DNNs?

“Empirically we found optimising the parameters of a prior ppwq (by taking
derivatives of (1)) to not be useful, and yield worse results.”

Weight Uncertainty in Neural Networks, (Blundell et al., 2015)

§ Common failure mode: For ppwq “ N
`

w; 0, σ2I
˘

, σ Ñ 0.
§ I have observed when attempting VI in DNNs:

Lpφopt, σ “ 0q " Lpφopt, σ “ σsensibleq (8)

§ Does this mean that KLrqp f q||pp f |y, θqs is large?
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Cold Posteriors

From Wenzel et al. (2020)

pTpθ|yq9 ppθ|yq1{T (9)

§ Posterior performs worse than point estimate!
§ Bayes is sensitive to the prior as well!
§ Does the prior make things worse?
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Weight Priors

Investigate different weight priors in neural networks:

Bayesian Neural Network Priors Revisited
Fortuin*, Garriga-Alonso*, Wenzel, Rätsch, Turner, vdW: , Aitchison:
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Weight Priors

We observe:
§ Better performance with different (e.g. correlated) priors
§ Data augmentation is a strong cause of the cold posterior effect

Possible explanations:
§ Analysis of infinitely wide neural networks shows that

independent weights can destroy spatial activation correlation.
Correlated weights can recover this (Garriga-Alonso and van der
Wilk, 2021).

§ Data augmentation should be expressed as an invariance in the
prior (v.d.Wilk et al., 2018).
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Successful Deep Bayesian Model Selection

There is one deep model where variational bounds work for Bayesian
model selection...

§ Deep Gaussian Processes (Damianou and Lawrence, 2013)!
§ Theory seems to work: Derive VI bound, get uncertainty &

hyperparameters.
§ Deep Convolutional GPs (Blomqvist et al., 2020; Dutordoir et al.,

2020) are improving significantly.
§ New methods make DGPs easier to use, and look remarkably

similar to DNNs. Convergence?

What makes VI bounds work in deep GPs?
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Ensembles and Posteriors

For linear models, ensembles and posteriors can be identical
(Matthews et al., 2017):

wpkq iid
„ N p0, Iq (10)

wpkq
p :“ GradDescpwpkq, ||y´ΦpXqw||2q (11)

ùñ wpkq
p

iid
„ ppw|yq (12)

where ppyn|wq “ N
`

yn; φpxnq
Tw, σ2

˘

, with σ2 Ñ 0.
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Can optimisation do Bayesian Model Selection?

log ppyq “
n
ÿ

i“1

log ppyi | yăiq “
ÿ

i

log Eppw|yăiqrppyi|wqs

ě
ÿ

i

Eppw|yăiqrlog ppyi|wqs

For linear models the answer is an unambiguous yes:
§ exact posterior samples can be produced to minimizing an

unregularized loss (Matthews et al., 2017),
§ so we can get a lower bound to the marginal likelihood by

summing training losses.

§ Bayesian Perspective on Training
Speed and Model Selection

Clare Lyle, Lisa Schut, Binxin Ru, Yarin Gal, MvdW
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Neural Architecture Search

Inspired by this, we investigated whether training speed could
predict testing accuracy of a network.
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Conclusion & Ways Forward

§ Bayesian model selection could provide great benefits in DNNs.
§ Inference and prior specification are unsolved.
§ There are examples that show that marginal likelihood

maximisation works in deep models!

Possible ways forward:
§ Perhaps we still need better approx posteriors?
§ Perhaps model misspecification is a problem?

(Wenzel et al., 2020)
§ Perhaps optimization mechanisms can do the same thing?

(Lyle et al., 2020)
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Alternative approaches

Two approaches based on back-propagating through a validation set:
§ Meta-learning (Zhou et al., 2020)
§ Implicit function theorem (Lorraine et al., 2020)
§ Straightforward regularization (Benton et al., 2020)

What is going to be best? Only research will tell!
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Why can’t we just use training loss?

For the same reason as why we need cross-validation:
§ The training loss is minimised with the most flexible model
§ Inductive biases are constraints

Log marginal likelihood measures generalisation:

log ppy | θq “ log ppy1|θq ` log ppy2|θ, y1q ` log ppy3|θ, tyiu
2
i“1q . . .

(It’s also related to cross-validation (Fong and Holmes, 2020).)
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