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About our research group

§ 2020–: Lecturer (Assistant Prof) at Imperial College London.
§ Currently growing a research group.
§ Research focus:

§ Gaussian process inference, backed by theory to make it reliable.
§ Automatic learning of inductive bias in neural networks.

Central question: When should neurons be connected?
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Regression

A lot of Machine Learning is just curve fitting.

Given dataset D “ txn, ynu
N
n“1 related as yn “ f pxnq ` εn ,

with Erεns “ 0 ,
find f p¨q.
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Gaussian Process Regression
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Gaussian processes are great because:
§ they quantify uncertainty,

which is good for decision-making,
§ they are automatic,

i.e. there are clear methods for setting parameters
(e.g. in “hyperparameters” the prior).

Automating Gaussian Process Approximations Mark van der Wilk StatML Workshop @ Amazon, Apr 5, 2022 4



Gaussian Process Inference

Performing regression with GPs requires two steps:
1. Finding the posterior given parameters of the prior

pp f p¨q|y, θq “
ppy| f p¨q, θqpp f p¨q|θq

ppy|θq
(1)

2. Finding the hyperparameters θ
by maximising the marginal likelihood (MaxLik type-II):

θ˚ “ argmax
θ

log ppy|θq (2)

No gridsearch, no cross-validation, no trial-and-error
ùñ super convenient.

Automating Gaussian Process Approximations Mark van der Wilk StatML Workshop @ Amazon, Apr 5, 2022 5



Gaussian Process Approximations

Computations are hard because of:
§ OpN3q computational cost for N datapoints,
§ Non-conjugate inference (classification, deep, ...)

Approximations have been studied for decades...
§ Eigenfunction / spectral decompositions

(Ferrari-Trecate et al., 1998; Rahimi and Recht, 2008; Hensman et al., 2016; Dutordoir et al., 2020)

§ Nyström / inducing points
(Williams and Seeger, 2001; Seeger et al., 2003; Snelson and Ghahramani, 2005; Titsias, 2009; Hensman et al., 2013; Burt,

Rasmussen, and van der Wilk, 2020)

§ Conjugate Gradient methods
(Gibbs and Mackay, 1997; Davies, 2015; Gardner et al., 2018; Artemev, Burt, and van der Wilk, 2021)

§ Many, many more (structured matrices, sparse precision, ...)

Still no straightforward procedure!
Automating Gaussian Process Approximations Mark van der Wilk StatML Workshop @ Amazon, Apr 5, 2022 6



Why aren’t we finished yet?

§ Consider the simplest case: GP Regression.
§ Still no straightforward recommendation of what to do!
§ Vast, almost incomprehensible literature of approximations!

Why so complicated?

§ Approximations have parameters. User needs to set them.
§ Papers don’t tune properly (difficult and time-consuming).
§ Difficult to evaluate properly.

I want to share work on
Automating and Evaluating

Joint work with David Burt.
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Approximation 1: Variational Inference

Define an approximate posterior:

qp f¨q “

ż

pp f¨| fZqqp fZqd fZ

“ N
´

f¨; K¨ZK´1
ZZm, K¨¨ ´K¨ZK´1

ZZpKZZ ´ SqK´1
ZZKZ¨

¯

Varying m.

Varying Z.

Varying S.

Find m, S, Z by minimising KLrqp f¨q||pp f¨|yqs.
(Titsias, 2009; Matthews et al., 2016)
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Approximation 1: Variational Inference

I like this method because it is automatic and generally applicable.

Every parameter can be found by
maximising the ELBO!

§ For regression, m, S have closed-form optima.
§ Numerical optimisation for Z. ùñ painfully slow (many iters)
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Variational Inference: Optimising Inducing Inputs

Finding inducing inputs Z is a major difficulty:
§ How many inducing points to use?

Left to the user. ùñ not automatic!
§ Need to initialise Z. Subsample data? Gaussian? K-means?

Folk wisdom. ùñ not automatic!
§ Large number of parameters of Z ùñ slow convergence.

May not even get close to optimal solution!
Also need to decide how long to run for ùñ not automatic!

§ How should number of inducing points grow with data N?

Theory provides solutions.
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Variational Inference: Proofs of Accuracy

We (Burt, Rasmussen, and van der Wilk, 2019, 2020) set out to find out

§ how quickly the number of inducing points would need to grow,
§ with the dataset size N,
§ for KL Ñ 0.

This requires making assumptions about:
§ The input distribution: iid from some ppxq (can weaken this).
§ The function we’re learning (some weak assumptions).
§ The method for selecting inducing inputs Z.

We show this is the case
if we sample Z from an approximate M-DPP.

See theorems in Burt et al. (2019, 2020)
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Variational Inference: Initialising Z

§ M-DPP spreads out inducing points better than Uniform.
§ Proof shows that gradient-based optimisation is not needed!
§ For simplicity we use approximate M-DPP

(no proof, empirical evidence only).
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Variational Inference: Current Status

§ “Greedy var” recovers GP performance quickest.
§ No need to choose initialisation procedure. ùñ automatic!
§ Optimisation now only over kernel and likelihood

hyperparameters. BFGS actually converges. ùñ automatic!
§ Final problem: How to select number of inducing points M.
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Approximation 2: Conjugate Gradients

Training objective:

L “ c´
1
2

log|Kθ| ´
1
2

yTK´1
θ y

∇θL “ ´
1
2

TrpK´1
θ

BKθ

Bθ
q ´

1
2

yTK´1
θ

BKθ

Bθ
K´1

θ y

Idea (Gibbs and Mackay, 1997; Davies, 2015; Gardner et al., 2018): Find K´1
θ v by solving:

argmin
x

1
2

xTKθx´ xTv

§ Conjugate Gradients gives iterative solution, exact in the limit.
§ May give better speed-accuracy trade-off than inducing points

(particularly when Kθ not low-rank).
§ Genuinely impressive results, e.g. Exact GPs on a Million Data

Points (Wang et al., 2019).1
1However, I disagree that the method can be called exact.
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Conjugate Gradients: Free parameters

§ How does CG error influence the hyperparameter gradients?
§ How many CG iterations to run for good behaviour?
§ How many CG iterations to run for good accuracy-speed

trade-off?

This has practical consequences, with behaviour that you would not
expect from an exact method:
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Conjugate Gradient Lower Bound

We (Artemev, Burt, and van der Wilk, 2021) develop the Conjugate
Gradient Lower Bound (CGLB).
Idea:

§ Partial solution to inverse x is a parameter in the objective.
§ This unifies CG optimisation to find inverse with

hyperparameter optimisation! ùñ prevents divergence.
§ Objective measures how close x is to K´1

θ y (like variational!)

θ˚, x˚ “ argmax
θ,x

Lpθ, xq

with x˚ “ argmax
x

Lpθ, xq “ K´1y , @θ

§ Additional upper bound on Lpθ, x˚q ´ Lpθ, xq to automatically
determine number of CG iterations.
(This stops CG when it is guaranteed within 1 nat of solution).
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Conjugate Gradient Lower Bound

§ Fewer iterations of CG ùñ faster.
§ No divergence during optimisation ùñ better performance.
§ No CG tolerance parameters ùñ automatic!
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Conclusions
We want to run GP approximations to work transparently and
automatically on a wide range of datasets!

§ GP approximation is still open because methods are
not automatic enough.

§ Theoretical guarantees help with automating parameter selection
(we saw this in variational and CG methods).

§ Conjecture: Differences between similar approximations are
down to uninteresting parameter tuning, which we want to
automate away.

There is still work to be done.
§ Selecting number of inducing points.
§ Good software support (underrated but important!)
§ Find benchmarks and demos (team up with industry?)
§ Understand relationship between approximations and

misspecification (ongoing work)
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Evaluating GP Approximations
Under model-misspecification...

good approximation and good prediction
are not the same.

Figure: FITC can predict better than a GP, because it can be a bad approximation (From Snelson and Ghahramani, 2005).

§ FITC predicts better than a GP because it can be a bad
approximation (Bauer, van der Wilk, and Rasmussen, 2016).

§ Recommendation: Researchers should measure approximation
quality, not just performance.

§ A discussion of any sensible metric is better than nothing!
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Collaborate

§ We need more benchmarks!
§ Wide range of data scales, input dimensions, ...
§ Test: To automatically fit all of them without intervention.

We are close to a solution
but really making things work is hard.
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