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My Research

Research interests:
§ Automatically learning inductive biases (automatic +

computational)
§ Adaptivity & robustness: Continual learning, uncertainty
§ Applications: Decision making, BayesOpt, Model-based RL
§ Methods:

§ Bayesian model selection / Occam’s razor / MDL
§ Meta-learning
§ Approximate inference
§ (Deep) Gaussian processes & relations to DNNs
§ Interesting architectures (capsule networks)
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Bayesian Model Selection for Causality

Causal Discovery using Marginal Likelihood
CML4Impact workshop @ NeurIPS 2022
Anish Dhir · MvdW

Extended version soon to be on arxiv.
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Overview

Causality: Overview and Background

Causality: Approaches and Problems

Bayesian Model Selection for Causality and its Properties

An Actual Method

Discussion & Conclusion
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Causality: Motivation

§ We all know that “correlation is not causation”

§ Impossibility theorems of determining causation from
observations only

§ Gold standard: Intervene! (RCT)

One of the big questions in the causal inference community:

How far can we get with observational data alone?
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Causality: Example

Does (X cause Y) or does (Y cause X)?
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Structural Causal Models

We assume data to arise from a Structural Causal Model
§ Hierarchical order of data generation from causes to effects.

For bivariate problems, we simply have:

Xi :“ fXpNXiq, Yi :“ fYpXi, NYiq, (1)

§ NXi , NYi are independent noise RVs with arbitrary distribution
§ Procedure for YÑX is analogous

We consider behaviour over many datasets, each of which is
generated by different functions fX, fY.

§ A distribution on datasets arises from distributions ΠpFXq, ΠpFYq

§ For dataset D“pX, Yq“tpXi, Yiquwe get distribution ΠpX, Yq
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Factorisations & Interventions

Assuming X Ñ Y, we can factorise our joint in two ways:
§ ΠpX, Yq “ ΠpXqΠpY|Xq: Causal factorisation
§ ΠpX, Yq “ ΠpX|YqΠpYq: Anticausal factorisation

An intervention on a variable changes its value, generation function,
or noise input, while leaving those of all other variables unchanged.
E.g. if X Ñ Y, an intervention on X

§ Only changes ΠpXq
§ I.e. leaves ΠpY|Xq unchanged

The causal factorisation is special, because interventions leave part
unchanged. For the anticausal factorisation:

§ ΠpYq “
ř

X ΠpY|XqΠpXq and ΠpX|Yq9ΠpY|XqΠpXq
§ Changing ΠpXq changes both parts.

Assumptions known as Independent Causal Mechanism (ICM)
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Causal Models

Our model should directly parameterise the causal factorisation:

ppx, y|φ, θ,MXÑYq “ ppx|φ,MXÑYqppy|x, θ,MXÑYq ,
ppx, y|φ, θ,MXÐYq “ ppy|φ,MXÐYqppx|y, θ,MXÐYq ,

(2)

where the marginals are chosen from R and conditionals from C

R “ tpp¨|φq | φ P Φu , C “ tpp¨|¨, θq | θ P Θu. (3)

Allows part of the model to be re-used after an intervention
without degradation of accuracy
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Causal Discovery by Fitting Models

§ We can find θ, φ by fitting the model (maximum likelihood)

§ Accurate predictive models need large sets R, C
§ Can we determine MXÑY or MXÐY by fitting the model?

No.
MXÑY and MXÐY are in the same Markov Equivalence Class.

max
θ,φ

ppx|φ,MXÑYqppy|x, θ,MXÑYq “ max
θ,φ

ppy|φ,MXÐYqppx|y, θ,MXÐYq.
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Related Work: Restricted Model Classes

§ If we assume that data is generated from restricted R, C, we can
identify causal direction.

§ E.g. Additive Noise Models (ANM). For MXÑY assume

Yi “ f pXiq ` NYi (4)

i.e. NYi is independent from Xi and is additive.

§ (Example on whiteboard.)
§ Other classes of models are similarly identifiable.
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Additive Noise Model: Problem

§ What to do for a dataset like this?

§ ANM is misspecified!
§ ùñ won’t fit properly ùñ bad predictive model
§ Guarantees don’t hold anymore!
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Additive Noise Model: Another Example
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Additive Noise Model: Another Example

§ One direction needs multimodal noise
§ But noise in correct causal direction not independent of cause
§ Still, one direction more complex than the other?
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Complexity Metrics for Causality

The relation between simplicity and causality has been noted and
used before. We have methods that

§ are inspired by Kolmogorov Complexity,
§ are inspired by Minimum Description Length,
§ count parameters.

We show how Occam’s razor from Bayesian inference can elegantly
be used to discover causal direction.

§ Idea has been floated a few times before (will discuss later)
§ Bayes needs no more assumptions than Kolmogorov / MDL
§ ... and has the same (lack) of guarantees
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Bayesian Model Selection for Causal Models

Bayes says: Just find the posterior over the causal direction

ppMXÑY|Dq “
ppD|MXÑYqppMXÑYq

ppD|MXÑYqppMXÑYq ` ppD|MXÐYqppMXÐYq
(5)

Since we only have two options, we can summarise with

log
ppMXÑY|Dq
ppMXÐY|Dq

“ log
ppD|MXÑYqppMXÑYq

ppD|MXÐYqppMXÐYq
(6)

Bayes says: Must specify a prior on which direction is more likely.
ùñ We must be indifferent, so choose 0.5.
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Bayesian Model Selection for Causal Models

So we just need to compute the marginal likelihoods

ppx, y|MXÑYq “

ĳ

ppx|φ,MXÑYqppy|x, θ,MXÑYqppφ, θ|MXÑYqdφdθ ,

ppx, y|MXÐYq “

ĳ

ppy|φ,MXÐYqppx|y, θ,MXÐYqppφ, θ|MXÐYqdφdθ .

§ Bayes says: Must specify priors on φ, θ.
§ Information on distribution on causes should not provide

information on distribution of effect given cause (strict ICM).
ùñ φ KK θ

§ Consistent with earlier constraint approaches: Zero mass in prior.
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Can BMS Distinguish Causal Models?

MaxLik could not distinguish between causal models

ùñ Does BMS have the same problem?

For BMS to be indifferent, we need

pX,Ypx, y|MXÑYq “ pX,Ypx, y|MXÐYq @x, y (7)

§ Theorem in the paper says that as N Ñ8 this only happens in
very specific circumstances.

§ Example: Normalised linear models.
§ So, MaxLik has no opinion, but BMS does.
§ Does not show that BMS finds the correct causal direction,
§ but does show that BMS does not fail in the way MaxLik does.
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Does BMS find the correct causal direction?

Cannot prove strict correctness.

Instead, quantify probability.
§ Must assume datasets are sampled from some ΠpX, Yq.
§ Begin by assuming that our models’ priors allow one causal

direction to match ΠpX, Yq (no misspecification)

Decision rule (optimal for symmetric loss):

M˚ “

#

MXÑY if ppD|MXÑYq ą ppD|MXÐYq

MXÐY if ppD|MXÑYq ă ppD|MXÐYq
, (8)

PpE|MXÑYq “

ż

RY

ppD|MXÑYq1tppD|MXÐYq ą ppD|MXÑYqudD

Probability of error in both causal directions are equal:

PpEq “ PpE|MXÑYqPpMXÑYq ` PpE|MXÐYqPpMXÐYq “ PpE|MXÑYq

“
1
2
p1´ TVrPDp¨|MXÑYq, PDp¨|MXÐYqsq
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BMS under Model Misspecification

What if we don’t have the “true” priors?

ΠpE|MXÑYq “

ż

RY

πpD|MXÑYq1tppD|MXÐYq ą ppD|MXÑYqudD

|ΠpErrorq ´ PpErrorq| ď TVrΠDp¨|XÑYq, PDp¨|MXÑYqs (9)

“
1
2

ż

|πpD|XÑYq ´ ppD|MXÑYq|dD, (10)

§ Hard to verify that priors are right.
§ But at least it shows that there is a limit to the brittleness.
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Overview

Causality: Overview and Background

Causality: Approaches and Problems

Bayesian Model Selection for Causality and its Properties

An Actual Method

Discussion & Conclusion
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A More Realistic Model

Want to specify a flexible model with large R, C to minimise model
misspecification ùñ we want good predictive ability.

§ Conditional GPLVM for C, normal GPLVM for R:

ppyi|xi, f ,MXÑYq “

ż

ppyi| f pxi, wiq, xi, wi,MXÑYqppwiqdwi ,

ppxi|g,MXÑYq “

ż

ppxi|gpviq, vi,MXÑYqppviqdvi ,

§ These are basically Bayesian VAEs1, but with f „ GP , g „ GP
§ Very flexible density estimators! There exists a f , g that can

perfectly model any joint in both causal directions!
§ We use (existing) Variational Inference to approximate the

marginal likelihoods (ELBO)

1

Normal VAEs have a point estimate over the density that is to be estimated! A
Bayesian VAE has a full posterior.
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Probability of Error

MXÑY

Can use Monte Carlo to estimate probability of error (MC est = 0%)
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Experiments: ANM data

§ How does the non-fully-identifiable model work on
fully-identifiable data?

§ How does this compare to a fully-identifiable model?

Methods ANM

Gaussian Process 100.0
GPLVM 100.0

Table: ROC AUC scores for identifying causal direction of datastes
generated by an ANM (higher is better).

ùñ Addition of flexibility does not (detectably) hurt performance on
“easy” datasets.
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Experiments: Real & Synthetic Data

Are our priors (i.e. assumptions) good?

§ Can only determine based on empirical evaluation.
§ Not that different to existing methods, which are applied in

situations where assumptions are broken!
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Discussion

Prior says 0% error. But we get higher. Why?

§ Prior could be misspecified (but still better than other methods!)
§ E.g. more ambiguous datasets than expected by prior
§ Variational inference could be inaccurate in some cases
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Origins of Bayes for Causality

Discuss. References in paper.
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Conclusions

§ Causal discovery requires assumptions.

§ Bayes offers a way of encoding assumptions.
§ In fact, tells you where to make assumptions!
§ Naturally guides you to a method.
§ Allows specification of realistic assumptions.
§ Realistic assumptions lead to good performance.
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Join us!

§ I’m looking for PhD candidates (in Oxford from September)
§ Check my website (https://mvdw.uk/) for tips on applying, and

how to get in touch.
§ And do find me to chat if you have questions.
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