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Variational Prediction



Bayesian Models
In ML, we only care about the predictive distribution:

𝑝(𝒚∗ | 𝒚).

Impossible to specify directly (name one case where possible).

Usually easier to specify a generative model 𝑝(𝒚, 𝒚∗):

𝑝(𝒚∗|𝒚) =
𝑝(𝒚∗, 𝒚)

𝑝(𝒚)

Usually easier to specify with parameters (exchangeable, de
Finetti’s theorem):

𝑝(𝒚, 𝒚∗) = ∫
⎣
⎢⎡ ∏

𝑦𝑖∈(𝒚,𝒚∗)
𝑝(𝑦𝑖|𝜃)

⎦
⎥⎤𝑝(𝜃) d𝜃



Bayesian Models: Take-homes

If we reparameterise 𝜃, will 𝑝(𝒚∗, 𝒚) change?
I.e. 𝜃′ = 𝑡(𝜃), 𝑃𝜃′(𝐵) = 𝑃𝜃(𝑡−1(𝐵)).

If we reparameterise 𝜃, will 𝑝(𝒚∗|𝒚) change?

If we reparameterise 𝜃, will 𝑝(𝒚) change?

• Specific parameterisation doesn’t matter to observables.
• We don’t really care about any properties of parameters,

they are simply a means to an end.



Variational Inference
Find 𝑞(𝜃) ≈ 𝑝(𝜃|𝒚) by

arg min
𝑞∈𝑄

KL[𝑞(𝜃) ‖ 𝑝(𝜃|𝒚)].

Find 𝑝(𝒚∗|𝒚) as

𝑝(𝒚∗|𝒚) ≈ 𝑞(𝒚∗) = ∫ 𝑝(𝒚∗|𝜃)𝑞(𝜃) d𝜃.

This is a pain, needs Monte Carlo.

Can we not find 𝑞(𝒚∗) ≈ 𝑝(𝒚∗|𝒚) directly?
We want to avoid:
• costly MC integration to find predictive 𝑝(𝒚∗|𝒚).
• computation wasted on parameters, and focus on prediction.



Variational Prediction
Want to minimise

KL[𝑞𝒚∗‖𝑝𝒚∗|𝒚] = ∫ 𝑞(𝒚∗) log
𝑞(𝒚∗)
𝑝(𝜃|𝒚)

d𝒚∗

= ∫ 𝑞(𝒚∗) log
𝑞(𝒚∗)𝑝(𝒚)

∫ 𝑝(𝒚∗|𝜃)𝑝(𝒚|𝜃)𝑝(𝜃) d𝜃 d𝒚∗

So, sadly, the usual variational inference trick doesn’t apply, since
the integral prevents us from getting expectations over tractable
densities (which allows low-variance MC estimation in VI).

Any ideas?
• Jensen’s inequality over ∫ … d𝜃?



Tractable Variational Prediction
We can instead minimise

KL[𝑞𝒚∗,𝜃‖𝑝𝒚∗,𝜃|𝒚] = KL[𝑞𝒚∗‖𝑝𝒚∗|𝒚] + 𝔼𝑞𝒚∗[KL[𝑞𝜃|𝒚∗‖𝑝𝜃|𝒚,𝒚∗]]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

∴ KL[𝑞𝒚∗,𝜃‖𝑝𝒚∗,𝜃|𝒚] ≥ KL[𝑞𝒚∗‖𝑝𝒚∗|𝒚]

This does give a MC-tractable ELBO [1]:

KL[𝑞𝒚∗,𝜃 ‖ 𝑝𝒚∗,𝜃|𝒚] = ∫ 𝑞(𝒚∗, 𝜃) log
𝑞(𝒚∗, 𝜃)𝑝(𝒚)

𝑝(𝒚∗|𝜃)𝑝(𝒚|𝜃)𝑝(𝜃)
d𝒚∗ d𝜃

∴ log 𝑝(𝒚) − KL[𝑞 ‖ 𝑝𝒚∗,𝜃|𝒚] = ∫ 𝑞(𝒚∗, 𝜃) log
𝑝(𝒚∗|𝜃)𝑝(𝒚|𝜃)𝑝(𝜃)

𝑞(𝒚∗, 𝜃)
d𝒚∗ d𝜃

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ



Tractable Variational Prediction
Putting the bound in another form:

ℒ = 𝔼𝑞𝒚∗[𝔼𝑞𝜃|𝒚∗ [log 𝑝(𝒚|𝜃) + log 𝑝(𝒚∗|𝜃)]] +

−𝔼𝑞𝒚∗[KL[𝑞𝜃|𝒚∗ ‖ 𝑝𝜃]] +

ℋ[𝑞(𝒚∗)]

This is very similar to the familiar variational bound.

A. A. Alemi and B. Poole [1] suggest to parameterise 𝑞(𝒚∗, 𝜃) by
taking

𝑞𝒚∗ ∈ 𝑄𝑝

𝑞𝜃|𝒚∗ ∈ 𝑄𝑐 NB: Conditionals!



When is this Useful?
Remember our goals!
• Definitely useful when we want to obtain 𝑞(𝒚∗) ≈ 𝑝(𝒚∗|𝒚) at

training time.

What is an example of a model where this is useful?

Diffusion models? Good to amortise generation cost at training?

As an aside: I worked on a kind of variational prediction years
ago. Not for amortisation, but instead for finding closed-form
approximations of intractable predictive distributions [2].



When does VP work?
What does “work” mean?

⇒ We obtain low KL[𝑞𝒚∗ ‖ 𝑝𝒚∗|𝒚].

Remember:

KL[𝑞𝒚∗,𝜃 ‖ 𝑝𝒚∗,𝜃|𝒚] = KL[𝑞𝒚∗ ‖ 𝑝𝒚∗|𝒚] + 𝔼𝑞𝒚∗[KL[𝑞𝜃|𝒚∗ ‖ 𝑝𝜃|𝒚,𝒚∗]]

• Sufficient: KL[𝑞𝒚∗,𝜃 ‖ 𝑝𝒚∗,𝜃|𝒚] is small.
• KL[𝑞𝜃|𝒚∗ ‖ 𝑝𝜃|𝒚,𝒚∗] is constant over 𝒚∗, and our

parameterisation of 𝑞(𝒚∗) is flexible.



Transductive Learning



Defining (Bayesian) Transductive Learning
When can we say that transductive learning has taken place?

Transductive Learning
We want the predictions that we care about to be better,
without our inductive learning capability getting better.

For transductive learning to have taken place, we need:

KL[𝑞VI
𝜃 ‖ 𝑝𝜃|𝒚] ≤ KL[𝑞VP

𝜃 ‖ 𝑝𝜃|𝒚]

KL[𝑞VI
𝒚∗ ‖ 𝑝𝒚∗|𝒚] ≥ KL[𝑞VP

𝒚∗ ‖ 𝑝𝒚∗|𝒚]

Can we prove that VP can/cannot do transductive
learning?

I don’t know, happy to chat.



Bayesian Transductive Learning
We only know

KL[𝑞VP
𝒚∗,𝜃‖𝑝𝒚∗,𝜃|𝒚] = KL[𝑞VP

𝒚∗ ‖𝑝𝒚∗|𝒚] + 𝔼𝑞𝒚∗[KL[𝑞VP
𝜃|𝒚∗‖𝑝𝜃|𝒚,𝒚∗]]

= KL[𝑞VP
𝜃 ‖𝑝𝜃|𝒚] + 𝔼𝑞𝜃

[KL[𝑞VP
𝒚∗|𝜃‖𝑝𝒚∗|𝜃,𝒚]]

If we assume that 𝑄𝑀 ⊆ 𝑄 the implied 𝑞VP
𝜃 ∈ 𝑄𝑀 , then we have

KL[𝑞VP
𝒚∗,𝜃‖𝑝𝒚∗,𝜃|𝒚] ≥ KL[𝑞VI

𝜃 ‖𝑝𝜃|𝒚]

We can also find (but of limited help):

KL[𝑞VI
𝜃 ‖𝑝𝜃|𝒚] > KL[𝑞VI

𝒚 ‖ 𝑝𝒚|𝒚∗] DPI



Data Processing Inequality
Given a conditional 𝑝(𝒚|𝜃), and marginals

𝑝(𝜃) ⇒ 𝑝(𝒚) = ∫ 𝑝(𝒚|𝜃)𝑝(𝒚) d𝜃

𝑞(𝜃) ⇒ 𝑞(𝒚) = ∫ 𝑝(𝒚|𝜃)𝑞(𝜃) d𝜃

Then,

KL[𝑞𝜃 ‖ 𝑝𝜃] ≥ KL[𝑞𝒚 ‖ 𝑝𝒚].

Data Processing Inequality
Any processing cannot make distributions easier to distinguish
from one another.



Variational Prediction
for

Sparse Gaussian Processes



Sparse Gaussian Processes
They are a great testbed for inference methods, because:
• You can control for many variables (e.g. control for optimisation

behaviour by finding variational dists in closed-form)
• You can mathematically characterise/understand the true

posterior (closed-form, but computationally intractable) [3]
• It is actually possible to get to the very accurate regime [4], [5]
• Parameters are predictions (specifically relevant for this case)

Transductive learning in approx GPs should concentrate inducing
points around prediction areas. Board.



Variational Prediction for Sparse GPs
VP tells us to minimise KL[𝑞VP

𝒚∗,𝜃‖𝑝𝒚∗,𝜃|𝒚].

For Sparse GPs, 𝜃 = (𝒇, 𝒖), 𝒚 = 𝒇∗, so

KL[𝑞VP
𝒇∗,𝒇,𝒖‖𝑝𝒇∗,𝒇,𝒖|𝒚].

We choose the usual special posterior, but we need an arbitrary
joint between 𝒇∗ and 𝒖:

𝑞(𝒇∗, 𝒇, 𝒖) = 𝑞(𝒇∗, 𝒖)𝑝(𝒇|𝒖, 𝒇∗)

This is a normal inducing point approximation
The targeted distribution is just the normal full posterior over
functions.



Conclusion



Conclusion
• You can train a predictive distribution with variational inference

A. A. Alemi and B. Poole [1].
‣ They haven’t managed to get it to work at large scale.
‣ My guess is that the goal is to speed up generation in

diffusion models.
• Can also be thought of as a way to do Bayesian transductive

learning.
• Not clear whether it actually can.

‣ Can any Bayesian method do transductive learning? Or are
we forced to do inference over everything, and be hampered
in performance by the poorest part?

• In GPs, it just becomes the usual method, approximating the
whole posterior.
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